Using Systems Biology to understand Immunosenescen
  • Using Systems Biology to Understand Immunosenescence
  • Background
    • Introduction
    • 1.1. Aging in Society and in the Individual
    • 1.2. Aging and its Molecular Mechanisms
    • 1.3.The Remodeling of the Immune System: Immunosenescence
    • 1.4. Changes in the Immune System Related to Immunosenescence
    • 1.5 Chronic Inflammation During Aging: Inflammaging
    • 1.6 The Immune Risk Phenotype (IRP)
    • 1.6. Systems Biology
  • Objectives
  • Methods
    • Overall Methodology
    • 3.1 Survey of Studies
    • 3.2. Reannotation of Probes in Microarrays
    • 3.3. Data acquisition and pre-processing
    • 3.4. Creation of age-representative samples: AgeCollapsed
    • 3.5. Detection of Highly Age-Related Transcripts: AgingGenes
    • 3.6. Lifetime Co-Expressed Transcript Analysis: AgingNet
    • 3.7. Detection of Change Points in Age-Related Modules
  • Results
    • 4.1. Survey and Data Acquisition
    • 4.2. Reannotation of Platforms
    • 4.3. AgeCollapsed Pre-Processing and Creation
    • 4.4. Assessment of the Agreement of the Relationships of Transcripts with Age between the Sexes
    • 4.5. AgingGenes and AgingNet Reviews
    • 4.6 Aging Co-Expression Network: AgingNet
  • Discussion
    • Main Regards
    • AgingGenes
    • Análise de Co-Expressão: AgingNet
  • Conclusions
    • Final Regards
  • Citations
    • References
  • Appendix
    • Supplementary Files
Powered by GitBook
On this page
  1. Results

4.2. Reannotation of Platforms

Previous4.1. Survey and Data AcquisitionNext4.3. AgeCollapsed Pre-Processing and Creation

Last updated 3 years ago

Was this helpful?

CtrlK

Was this helpful?

Reannotation of the platforms identified several classes of transcripts, most of them being probes representing protein-coding transcripts from Gencode. In addition, we found more than 10,000 non-protein-coding transcripts from the Noncode, LNCipedia, and MiTranscriptome databases (Figure 4.2).

Figura 4.2. Quantidade dos Principais Tipos de Transcritos encontrados em todas as Plataformas. Gráfico de barras representando a quantidade total de cada tipo de transcrito encontrado em todas as plataformas, após a reanotação. Transcritos classificados como “outros” se referem à pseudogenes, imunoglobulinas e RNAs mitocondriais.

Analyzing the proportion of transcript classes in each platform (Figure 4.3), a great variability can be seen both in the total amount and in the proportion of transcript classes found in each platform.

Figura 4.3. Proporção dos Tipos de Transcritos por Plataforma. Gráficos de pizza representando a proporção dos tipos de transcritos encontrados em cada plataforma, após a reanotação. São mostrados a proporção de transcritos codificadores de proteínas (em vermelho), não-codificantes (em amarelo) e outros (verde).